Все данные в реляционной модели данных представляются. Реляционная модель данных. Модели данных определяются

Реляционная модель данных – логическая модель данных. Впервые была предложена британским учёным сотрудником компании IBM Эдгаром Франком Коддом (E. F. Codd) в 1970 году в статье "A Relational Model of Data for Large Shared Data Banks" ( , в которой она впервые описана, опубликован в журнале "СУБД" N 1 за 1995 г.). В настоящее время эта модель является фактическим стандартом, на который ориентируются практически все современные коммерческие СУБД.

В реляционной модели достигается гораздо более высокий уровень абстракции данных, чем в иерархической или сетевой . В упомянутой статье Е.Ф. Кодда утверждается, что "реляционная модель предоставляет средства описания данных на основе только их естественной структуры, т.е. без потребности введения какой-либо дополнительной структуры для целей машинного представления". Другими словами, представление данных не зависит от способа их физической организации. Это обеспечивается за счет использования математической теории отношений (само название "реляционная" происходит от английского relation – "отношение").

В состав реляционной модели данных обычно включают теорию нормализации .

Состав реляционной модели данных

Кристофер Дейт определил три составные части реляционной модели данных:

  • структурная
  • манипуляционная
  • целостная

Структурная часть модели определяет, что единственной структурой данных является нормализованное n-арное отношение. Отношения удобно представлять в форме таблиц, где каждая строка есть кортеж, а каждый столбец – атрибут, определенный на некотором домене. Данный неформальный подход к понятию отношения дает более привычную для разработчиков и пользователей форму представления, где реляционная база данных представляет собой конечный набор таблиц.

Манипуляционная часть модели определяет два фундаментальных механизма манипулирования данными – реляционная алгебра и реляционное исчисление. Основной функцией манипуляционной части реляционной модели является обеспечение меры реляционности любого конкретного языка реляционных БД: язык называется реляционным, если он обладает не меньшей выразительностью и мощностью, чем реляционная алгебра или реляционное исчисление.

Целостная часть модели определяет требования целостности сущностей и целостности ссылок . Первое требование состоит в том, что любой кортеж любого отношения отличим от любого другого кортежа этого отношения, т.е. другими словами, любое отношение должно обладать первичным ключом . Требование целостности по ссылкам, или требование внешнего ключа состоит в том, что для каждого значения внешнего ключа, появляющегося в ссылающемся отношении, в отношении, на которое ведет ссылка, должен найтись кортеж с таким же значением первичного ключа, либо значение внешнего ключа должно быть неопределенным (т.е. ни на что не указывать).

Структура реляционной модели данных

Можно провести аналогию между элементами реляционной модели данных и элементами модели "сущность-связь" . Реляционные отношения соответствуют наборам сущностей, а кортежи – сущностям. Поэтому, также как и в модели "сущность-связь" столбцы в таблице, представляющей реляционное отношение, называют атрибутами.

Каждый атрибут определен на домене, поэтому домен можно рассматривать как множество допустимых значений данного атрибута. Несколько атрибутов одного отношения и даже атрибуты разных отношений могут быть определены на одном и том же домене.

В примере, показанном на рисунке, атрибуты "Оклад" и "Премия" определены на домене "Деньги". Поэтому, понятие домена имеет семантическую нагрузку: данные можно считать сравнимыми только тогда, когда они относятся к одному домену. Таким образом, в рассматриваемом нами примере сравнение атрибутов "Табельный номер" и "Оклад" является семантически некорректным, хотя они и содержат данные одного типа.

Именованное множество пар "имя атрибута – имя домена" называется схемой отношения . Мощность этого множества - называют степенью или "арностью" отношения. Набор именованных схем отношений представляет из себя схему базы данных .

Атрибут, значение которого однозначно идентифицирует кортежи, называется ключевым (или просто ключом ). В нашем случае ключом является атрибут "Табельный номер", поскольку его значение уникально для каждого работника предприятия. Если кортежи идентифицируются только сцеплением значений нескольких атрибутов, то говорят, что отношение имеет составной ключ. Отношение может содержать несколько ключей. Всегда один из ключей объявляется первичным, его значения не могут обновляться. Все остальные ключи отношения называются возможными ключами .

В отличие от иерархической и сетевой моделей данных в реляционной отсутствует понятие группового отношения. Для отражения ассоциаций между кортежами разных отношений используется дублирование их ключей.

Применение реляционной модели данных

Пример базы данных, содержащей сведения о подразделениях предприятия и работающих в них сотрудниках, применительно к реляционной модели будет иметь вид:

Например, связь между отношениями ОТДЕЛ и СОТРУДНИК создается путем копирования первичного ключа "Номер_отдела" из первого отношения во второе. Таким образом:

  • для того, чтобы получить список работников данного подразделения, необходимо:
    1. из таблицы ОТДЕЛ установить значение атрибута "Номер_отдела", соответствующее данному "Наименованию_отдела"
    2. выбрать из таблицы СОТРУДНИК все записи, значение атрибута "Номер_отдела" которых равно полученному на предыдущем шаге
  • для того, чтобы узнать в каком отделе работает сотрудник, нужно выполнить обратную операцию:
    1. определяем "Номер_отдела" из таблицы СОТРУДНИК
    2. по полученному значению находим запись в таблице ОТДЕЛ

Атрибуты, представляющие собой копии ключей других отношений, называются внешними ключами.

Подавляющее большинство современных информационных систем базируется на данных, представленных в виде реляционной модели. Основными понятиями реляционной модели данных являются:

Предметная область - это часть реального мира (класс или совокупность классов реальных объектов), рассматриваемая с определенной точки зрения, подлежащая модельному отражению с целью ее автоматизации. Предметная область бесконечна и содержит как существенно важные для разработки информационной системы понятия и данные, так и малозначительные или вообще не значащие данные. В общем случае модель предметной области описывает информационные процессы, происходящие в предметной области и данные, используемые этими процессами. Предметная область представляется множеством структурных единиц (например, предприятие - цехами, администрацией, бухгалтерией и т.д.). Каждая структурная единица предметной области характеризуется множеством объектов и процессов, использующих объекты, а также множеством пользователей, характеризуемых различными взглядами на предметную область. От того, насколько правильно смоделирована предметная область, зависит результат разработки приложений и успех информационной системы.

Например, в качестве предметной области можно выбрать бухгалтерию какого-либо предприятия, отдел кадров, банк, магазин и т.д. Так, если в качестве предметной области выбрать учет товаров на складе, то понятия "накладная" и "счет-фактура" являются существенно важными понятиями, а то, что сотрудница, принимающая накладные, имеет двоих детей - это для учета товаров неважно. Однако, с точки зрения отдела кадров данные о наличии детей являются существенно важными. Таким образом, важность данных зависит от выбора предметной области.

Модель данных – это совокупность структур данных и операций их обработки.

Реляционная модель – модель представления данных предметной области, построенная на взаимосвязи отношении. Согласно К. Дж. Дейту реляционная модель данных описывает три аспекта: структурный, целостный манипуляционный:

· Структурный - данные в модели представляют собой набор отношений.

· Целостный - отношения отвечают определенным условиям целостности. (декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных).

· Манипуляционный (обработки) - модель поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).

Отношение – совокупность объектов предметной области, которые описываются едиными (общими) характеристиками и свойствами. Отношение является фундаментальным понятием реляционной модели данных. Отношение является абстрактным понятием, визуальным представлением отношения в реляционной теории на бумаге или экране может служить таблица.

Атрибут – информационное отображение (характеристика, свойство) объекта предметной области, используемая для его описания, принимающее конкретное значение из множества допустимых значений. Каждый атрибут имеет имя, которое используется для обращения к данным. Имена атрибутов уникальны в пределах отношения. Т.о. отношение представляет собой множество атрибутов. На практическом уровне атрибут – это поле таблицы.

Схема отношения – полный перечень имен атрибутов отношения.

Кортеж – это элемент отношения, содержащий однозначное представление объекта реального мира, в соответствии с выделенными атрибутами. На практическом уровне кортеж – это запись в таблице.

Ключ отношения – атрибут или совокупность атрибутов отношения, однозначно идентифицирующий каждый кортеж. Если ключ отношения удовлетворяет условиям уникальности и минимальности, то такой ключ называется первичным. Атрибут отношения, используемый для хранения значений первичного ключа другого отношения с целью организации связи между этими отношениями, называется внешним .

В реляционной модели предметной области, как правило, данные, необходимые для функционирования информационной системы, представляются в виде совокупности взаимосвязанных отношений . Для установления логических связей между отношениями используются внешние ключи. Чтобы данные в информационной системе были однозначными и непротиворечивыми, в реляционной модели должны быть установлены ограничительные условия - ограничения целостности, которые позволяют минимизировать ошибки в процессе эксплуатации системы. Важнейшими ограничениями целостности являются: категорийная и ссылочная целостность.

При установлении логических связей между отношениями используются четыре типа связей :

· Один к одному – устанавливается между первичными ключами отношений. При этом каждому кортежу одного отношения будет соответствовать только один кортеж другого отношения.

· Один ко многим - устанавливается между первичным ключом одного отношений и внешним ключом другого отношения. При этом одному кортежу одного отношения будет соответствовать несколько кортежей другого отношения.

· Многие к одному - устанавливается между внешним ключом одного отношения и первичным ключом другого отношения. При этом нескольким кортежам одного отношения будет соответствовать только один кортеж другого отношения.

· Многие ко многим - устанавливается между внешними ключами отношений. При этом любым кортежам одного отношения могут соответствовать несколько кортежей другого отношения.

Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части .

В 1970 году Эдгар Кодд опубликовал статью (Codd, 1970), в которой описал основы реляционной модели хранения данных. Практической реализацией этой модели стали все современные реляционные базы данных. Формализация модели привела к созданию реляционного исчисления и реляционной алгебры.

Основной элемент реляционной модели – это кортеж. Кортеж – это упорядоченный набор элементов, каждый из которых принадлежит определенному множеству или, иначе говоря, имеет свой тип. Совокупность однородных по структуре кортежей образует отношение.

Несколько более наглядно все это выглядит в терминах, используемых в базах данных (рисунок ниже). Отношение – это таблица с данными. Кортеж - строка таблицы. Какого типа кортежи содержатся в отношении, или, что то же самое, каков формат строк в таблице, определяется заголовком отношения или таблицы. Каждый из столбцов таблицы образует домен. Значения, которое могут принимать элементы домена, называются атрибутами. Строки таблицы – это совокупность атрибутов, соответствующих доменам.


Пример отношения (Заборов)

Строки таблицы могут быть идентифицированы по своим атрибутам, то есть по тому, какие значения принимают элементы кортежа. Само содержание кортежа делает его непохожим на остальные. Но может так оказаться, что некоторые строки совпадут по своим атрибутам. Само по себе совпадение не страшно, но оно уже не позволяет использовать такой набор атрибутов, для однозначной идентификации кортежей в отношении. Чтобы идентификация была однозначной, вводят такое ключевое поле, которое для каждой строки принимает уникальное значение. Такой ключ может нести смысловую нагрузку, а может быть просто искусственно сгенерированным числом.

Совокупность всех отношений определяет базу данных. Каждое отношение хранит свою логическую часть информации. Чтобы получить определенные сведения может потребоваться сопоставление информации из разных отношений. Кодд описал восемь основных операций реляционной алгебры, позволяющих манипулировать с кортежами:

  • Объединение;
  • Пересечение;
  • Вычитание;
  • Декартово произведение;
  • Выборка;
  • Проекция;
  • Соединение;
  • Деление.
Замечательное свойство реляционной алгебры – это ее замкнутость, то есть операции над отношениями задаются таким образом, чтобы результат сам был отношением. То есть, имея несколько таблиц и производя соответствующие операции над ними, мы получим результатом тоже таблицу.

Смысл многих операций совпадает с соответствующими операциями из теории множеств. Общее представление об их сути дает рисунок ниже.


Пример операций над кортежами (Заборов)

Важно, что разные отношения могут содержать домены одного типа. Это значит, что если в двух кортежах встречаются одинаковые домены, внутри них одинаковые атрибуты, то можно говорить об определенной связи кортежей, содержащих эти атрибуты. Иначе говоря, если разные строки одной таблицы в одном из столбцов имеют одинаковые значения, то можно говорить об определенной связи этих строк. Или если в разных таблицах есть столбцы (домены) с одинаковым смыслом, то строки с одинаковыми значениями в этих столбцах оказываются связанными между собой.

Операция проекции позволяет получать отношения, состоящие из части элементов исходных отношений, ограничивая набор используемых доменов. Выборка или селекция позволяет получать отношения, содержащие только те кортежи, поля которых удовлетворяют условиям выборки. Например, можно выбрать только те кортежи, указанные домены которых имеют заданные значения атрибутов.

Совокупность всех операций над отношениями позволяет извлечь из базы данных любую интересующую информацию и сформировать ее в виде отношения (таблицы) с наперед заданными свойствами (заголовком).

Реляционной модель данных возникла не случайно, а явилась следствием необходимости оперировать с большими объемами разнообразных данных. Оказалось, что такая структура хранения данных и определенные в этой структуре операции удобны для решения широкого спектра прикладных задач. Можно предположить, что аналогичное удачное решение могла нащупать и природа в результате естественного отбора.

Описываемая нами система идентификаторов, понятий и событийной памяти во многом очень похожа на реляционную модель. Можно привести ряд аналогий:

  • Нейрон оперирует информацией с нескольких дендритных сегментов, каждый из которых настроен на данные определенного типа. Дендритные сегменты одного типа можно сопоставить с определенным доменом;
  • Сочетания понятий, которые описывают информацию, характерную для дендритного сегмента, соответствуют атрибутам, встречающимся в домене;
  • Понятия, используемые зоной коры, и идентификаторы, задающие структуру пакетов, характерную для этой зоны, определяют структуру доменов (заголовок);
  • Использование общих понятий при проекции информации между зонами соответствует использованию общих доменов в разных отношениях;
  • Совокупность зон коры, формирующих мозг, соответствует совокупности отношений, формирующих базу данных;
  • Ассоциативность, между воспоминаниями, соответствует связанности через общие атрибуты различных кортежей;
  • Распределенность воспоминания по зонам коры соответствует тому, как одно событие может породить несколько кортежей в разных отношениях, объединенных единым уникальным ключом;
  • Волна, описывающая текущее состояние мозга, может выступать аналогом запроса к базе данных. Так же, как результат операции над отношениями есть отношение, так и ответ мозга может быт совокупностью ассоциативно связанных описаний, совмещенных в одной волновой картине.
Конечно, между нашей моделью мозга и реляционными системами нет точного соответствия. Архитектура мозга значительно богаче, так как решает не только задачи хранения и извлечения данных, но и массу других совмещенных с этим функций. Однако даже имеющееся сходство позволяет лучше понять суть информационных процессов, происходящих в коре.

Неверным будет считать, что в информационных системах используются только реляционные базы данных. Зачастую можно встретить реализацию баз данных на основе иерархической, сетевой, реляционной и прочих моделей. Тем не менее, большинство информационных систем основываются на реляционных базах данных, основу которым заложил Э. Кодд в конце 1960-х гг., определив основные правила и операции, которые должны применяться при реализации таких баз данных. Многие модели баз данных, которые можно встретить в информационных системах, так или иначе основываются на принципах реляционных баз данных и используют различные дополнительные инструменты для улучшения работы с отдельными видами данных, например, с географическими данными, данными в реальном режиме времени (потоковые данные), многомерными данными и пр.

Основу в реляционных базах данных составляет реляционная модель данных, строящаяся на базе реляционной алгебры, формирующей базовые правила работы с данными в соответствующих базах данных.

Реляционная модель данных

Построение реляционной модели данных основывается на том понимании, что любой набор данных может быть представлен в виде отношения, оформляемого, но форме таблицы (рис. 1.12), где данные представляются

атрибутами и значениями на пересечении соответствующего атрибута с записью (кортежем).


Под термином "Отношение" понимается множество данных, объединенных в совокупность записей (кортежей) и описанных заголовком, содержащим множество атрибутов.

В представленном выше примере вся совокупность значений должностей и заголовочная часть с именованными атрибутами, по которым размещаются значения, называется отношением. В терминах формальной логики отношение в общем виде может быть представлено следующим образом:

R{A,T},i={1..n} (11)

В данном представлении под A, понимается атрибут, описывающий одну характеристику данных, а под T- тип данных, которому должны соответствовать представляемые в отношении данные. Представленный выше пример является неформальным изложением отношения. В его заголовке не указаны типы данных, которыми описываются представляемые в теле отношения сведения.

Обычно заголовок отношения, где указываются наименования атрибутов и их типов, называют схемой отношения, а совокупность взаимосвязанных схем отношений называется схемой данных. Заголовок отношения содержит стандартизированные типы данных или типы, произведенные из стандартизированных типов, а множество значений, связанных с конкретным атрибутом стандартного или производного типа данных, именуется доменом.

Вод термином "Домен" в теории баз данных понимается допустимое множество поименованных значений одного типа имеющих определенный смысл

Из данного определения следует, что домен характеризуется следующими свойствами:

  • домен несет определенную смысловую нагрузку, что выражается в понимании смысла описываемых данных, который обычно совпадает с понимаем данных в предметной области;
  • домен определяется простым или производным от простого типа данных, что позволяет воспользоваться простыми логическими операциями над данными;
  • домен может содержать логическое условие, которое выделяет определенное подмножество данных, допустимое для этого домена.

Тело отношения строится из множества записей, которые в терминах реляционной алгебры называются кортежами и представляют сведения, существующие в предметной области в рамках рассматриваемого объекта или группы взаимосвязанных объектов.

Таким образом, согласно определению кортежа, в него входят все возможные данные, подчиняющиеся правилам, определенным отдельными доменами. При этом каждый элемент данных кортежа соответствует только одному домену и подчиняется всем свойствам, которые определяются этим доменом.

Описание кортежей использует ряд важных свойств, некоторые из которых представлены ниже:

каждый кортеж содержит только одно значение для каждого из атрибутов, характеризующих отношение;

для компонентов кортежа, аналогично элементам домена, не предполагается какое-либо упорядочивание;

каждое подмножество кортежей представляется гоже кортежем.

Объединяя домены и кортежи, можно сформировать отношение, которое в общем виде определяется следующим образом;

R[<Заголовок>]{<Список кортежей >}. (1.2)

Заголовок отношения представляется разделенным запятыми списком атрибутов. Также важным является тот факт, что второй параметр отношения, при правильном представлении, обозначается термином "Тело", содержащим множество кортежей. Но для упрощения неформального общения и упрощения изложения термин "Тело" заменяют термином "Кортеж", подразумевая, что все кортежи формируют тело отношения. В дополнение к пониманию терминов "Кортеж", "Домен" и "Тело" в теории реляционных баз данных устанавливается ограничение, по которому все кортежи одного отношения относятся к одному и тому же типу кортежа, а он (тип кортежа) должен быть точно таким же, как он определен в заголовке отношения. Таким образом, все правила для представления данных, определенные в заголовке, распространяются на все кортежи отношения.

Учитывая описанные выше определения отношения, кортежа и домена, можно сформулировать основные свойства отношения. Для примера свойств отношения рассмотрим отношение информации о сотрудниках организации, включающее атрибуты кортежей, но ФИО сотрудника, его должности и должностному окладу. Эти атрибуты будут составлять заголовок отношения, формируя домены для отношения. Каждый атрибут заголовка содержит не только название атрибута, но и его тип (рис. 1.13), который определяет возможные типы хранимых данных по их представлению, обработке и ограничениям.

Рис. 1.13. Пример отношения "Сотрудники"

Любое отношение в реляционной базе данных характеризуется следующими свойствами.

1. Каждый кортеж содержит только одно значение соответствующего типа по каждому атрибуту (отношение нормализовано).

Каждому атрибуту в представленном примере в рамках каждого кортежа поставлено в соответствие только одно значение, что видно на пересечении выделенного домена "ФИО сотрудника" и кортежа с ФИО "Петров Петр Петрович". Отношение, которое соответствует этому свойству, является нормализованным , т.е. находится в данном случае в первой нормальной форме, 1НФ.

2. Атрибуты не являются упорядоченными по какому-либо правилу.

Ранее было определено, что компоненты кортежа не являются упорядоченными, а поскольку кортеж должен однозначно соответствовать атрибутам заголовка, то и эти атрибуты также не являются упорядоченными. Нужно понимать, что человек, представляя структуры данных, всегда применяет определенные правила упорядочивания атрибутов и кортежей, но важно помнить, что такое упорядочивание не является важным и не учитывается при работе с реляционными базами данных. Поэтому понятия "Первый атрибут" или "Второй атрибут" к объектам реляционной модели неприменимы, а также не может идти речь о термине "Следующий атрибут" или "Предыдущий атрибут".

Такая ситуация дает определенную жесткость в работе с базами данных, улучшая качество программного кода обработки данных, что зачастую не всегда очевидно при программировании с меньшей жесткостью.

3. Кортежи не являются упорядоченнымии по какому-либо правилу.

Данное свойство следует из того, что тело отношения представляется

множеством, которое по математическим правилам не является упорядоченным. Поскольку реляционные отношения подчиняются правилам работы с математическими множествами, то и применяется математический аппарат работы с множествами.

Конечно, представляя отношение на бумаге, человек попытается его каким-либо образом упорядочить, чтобы легче было обрабатывать. Однако такое отражение отношения не является правилом и является всего лишь представлением отношения. Само же отношение остается неупорядоченным, и представив его в другом порядке расположения кортежей, само отношение не изменить и к нему можно будет применить те же операторы обработки, что и для отношения с другим упорядоченным представлением. Из этого следует, что для реализации в базах данных упорядоченное представление отношения не имеет никакого смысла, а значит, любое отношение в базах данных является неупорядоченным.

4. В отношении отсутствуют дубликаты кортежей.

Это свойство отношения следует из понимания того, что тело отношения представляется множеством, а любое множество, с учетом его математического представления, не содержит дубликатов. Из этого следует, что, взяв любой кортеж, представленный всеми используемыми в отношении атрибутами, невозможно будет найти ни одного кортежа точно с такими же значениями атрибутами.

В то же время, это свойство иллюстрирует различия между отношением и таблицей. Понимая, что таблица данных является физической реализацией отношений в базе данных, там можно разместить записи с одинаковыми значениями, если, конечно, не обеспечить на уровне программной логики построения базы данных такую возможность, а отношение, по определению, никогда не содержит дубликатов кортежей.

Зачастую, когда нет необходимости отражать значения, описываемые в отношении (тело отношения), в реляционной модели ограничиваются только указанием заголовка отношения с прописанием наименования самого отношения или только наименованием отношения. Такие представления реляционной модели данных являются фильтрованными отображениями, которые применяются в специализированных средствах моделирования структур баз данных, как, например, в IBM InfoSphere Data Architect (рис. 1.14).


Основными сведениями, содержащимися в реляционной модели данных, являются наименования отношений (сущностей), атрибутов и типов атрибутов, которыми описываются отношения. Дополнительно в реляционной модели отражаются связи между отношениями (сущностями), которые дают возможность отобразить взаимодействие элементов тел связанных отношений. Каждый из указанных компонентов реляционной модели обладает рядом вспомогательных характеристик, которые уточняют.

вила представления и обработки элементов тела отношения. Хотя эти характеристики явно не визуализируются в модели данных, они учитываются при представлении отношений в полном виде с учетом отображения тела отношения.

Представленная в примере модель данных использует фильтр отображения, учитывающий необходимость показа наименования отношения (сущности), атрибутивного состава каждого отношения и связи между отношениями. Отсутствие в визуализации модели типов атрибутов и прочих характеристик не значит, что они не определены или их нет. Это всего лишь означает, что модель данных представлена для необходимости рассмотрения только указанных параметров, а все остальные характеристики зафиксированы в скрытых компонентах модели. Например, другим вариантом представления может быть случай, показанный на рис. 1.15.


В данном представлении, помимо наименования отношений (сущностей) и атрибутов, отображены типы данных, которые характеризуют тело отношения, хотя само тело в данных моделях не представляется. Нужно учитывать, что модель данных (модель базы данных) в специализированных средствах моделирования ориентирована на дальнейшее представление в виде структуры базы данных и указание тел отношений является нецелесообразным. В связи с этим в моделях баз данных, как правило, тела отношений не показываются. Если же модель строится именно для отражения операций с отношениями, в полном понимании этого термина, то все отношения должны представляться с телами, иллюстрирующими возможные значения, которые впоследствии будут храниться в таблицах базы данных.

Такое разделение зачастую вносит некоторую путаницу в корректность использования той или иной модели данных (модели базы данных), что требует более точного описания их использования. Так, модель данных в виде отношений используется, когда необходимо проиллюстрировать возможные операции над данными отношений и понимать правильность интерпретации в модели предметной области, представленной объектами с их возможными экземплярами. Модель данных в виде сущностей и связей (ЕЛ-модель) используется для формирования логической (инфологической) модели базы данных без указания конкретных значений данных и направлена на дальнейшее представление в форме структуры базы данных. Модель в виде таблиц и связей строится на физическом уровне, отражая особенности представления и обработки данных на уровне СУБД. В результате получается представление реляционной модели данных в трех основных вариантах (табл. 1.3).

Таблица 13

Варианты представления реляционных моделей данных

Вид представления

Используемая

терминология

Назначение

Модель с отражением наименования отношения, атрибутивного состава, связей

Сущность

Тип данных

Используется для моделирования логической структуры данных для последующего перехода на физический уровень

Модель с отражением заголовка и тела с возможными данными

Отношение

Заголовок

Атрибут/Домен

Тип данных

Используется для представления с указанием возможных значений данных и применения при необходимости анализа возможных операций над отношениями и данными в отношениях

Модель с отображением структур физического представления данных в СУБД

Атрибут/11оле/Колонка

Тип данных

Используется для отображения варианта представления структуры, которая будет реализована на физическом уровне в СУБД


Примечание. В данном разделе рассматриваются формы представления модели базы данных, что отражено тремя вариантами. Нужно учитывать, что моделирование базы данных строится на основе реализации уровней моделирования, а, следовательно, существует интерпретация моделей данных в соответствии с этими уровнями, которые представляются другими видами реляционных моделей, о чем речь пойдет позже. В связи с этим не стоит воспринимать описанный выше перечень представления моделей исчерпывающим, понимая, что могут быть другие представления и другие виды моделей.

  • Бойко В. В.. Савинков В. М. Проектирование баз ланных информационных систем.
  • Типы данных будут рассматриваться в рамках последующих глав.
  • Термин "Нормализация" и нормальные формы будут рассматриваться в гл. 2.

Реляционная база данных - это набор нормализованных отношений, которые различаются по именам.

Реляционная база данных состоит из отношений, структура которых определяется с помощью особых методов, называемых нормализацией.

Эти отношения обладают следующими характеристиками:

отношение имеет имя, которое отличается от имен всех других отношений в реляционной схеме;

каждая ячейка отношения содержит только одно элементарное (неделимое) значение;

каждый атрибут имеет уникальное имя;

значения атрибута берутся из одного и того же домена;

каждый кортеж является уникальным, т.е. дубликатов кортежей быть не может;

порядок следования атрибутов не имеет значения;

теоретически порядок следования кортежей в отношении не имеет значения; (Но практически этот порядок может существенно повлиять на эффективность доступа к ним)

набор возможных значений для данной позиции отношения определяется множеством, или доменом, на котором определяется эта позиция. В таблице все значения в каждом столбце должны происходить от одного и того же домена, определенного для данного атрибута;

во множестве нет повторяющихся элементов. Аналогично, отношение не может содержать кортежей-дубликатов;

поскольку отношение является множеством, то порядок элементов не имеет значения. Следовательно, порядок кортежей в отношении несуществен.

Реляционная база данных может состоять из произвольного количества нормализованных отношений. Общепринятое обозначение реляционной схемы включает имя отношения, за которым (в скобках) располагаются имена атрибутов. При этом первичный ключ (обычно) подчеркивается.

Достоинствами реляционной модели данных являются простота, гибкость структуры, удобство реализации на компьютере, высокая стандартизация и использование математического аппарата реляционной алгебры и реляционного исчисления.

К недостаткам можно отнести атомарность, ограниченность и предопределенность набора возможных типов данных. Это затрудняет использование реляционных моделей для некоторых современных приложений. Названная проблема решается расширением реляционных моделей в объектно-реляционные.

В объектно-реляционной модели отдельные записи базы данных представляются в виде объектов. Между записями базы данных и функциями их обработки устанавливаются взаимосвязи с помощью механизмов, подобных соответствующим средствам в объектно-ориентированных языках программирования. Объектно-ориентированные модели сочетают особенности сетевой и реляционной моделей и используются для создания крупных БД со сложными структурами данных.

В реляционной модели все данные представляются как факты о сущностях и связях, это и понимают под основными свойствами. Сущность - это, например, человек, место, вещь, событие, концепция, о которых хранится информация. Сущности именуются обычно существительными, такими как "покупатель", "компьютер", "служащий", "продажа".

Более точно, сущность - это множество индивидуальных объектов - экземпляров, причем все эти объекты являются различными.

Связь - это функциональная зависимость между сущностями. Например, "служащий" совершает "продажи".

Каждая сущность обладает атрибутами. Атрибут - это свойство объекта, характеризующее его экземпляр. Сущность "служащий" может иметь атрибуты "имя", "дата рождения" и т.д.

Общепринятым видом графического изображения реляционной модели данных является ER - диаграмма. На такой диаграмме сущности (таблицы) изображаются прямоугольниками, возможно, соединенными между собой линиями (связями). Такое графическое представление облегчает восприятие структуры базы данных по сравнению с текстовым описанием.

Различают целостность по сущностям и целостность по ссылкам. В целостности по сущностям не разрешается, чтобы какой-либо атрибут, участвующий в первичном ключе базового отношения принимал неопределенные значения.

Базовые отношения - это реально существующие модели отношения, которые соответствуют реальному объекту предметной области.

Пусть даны отношения R1 и R2. Пусть k1, - это первичный ключ отношения R1.

Если в отношении R2 присутствуют атрибуты k1, то для отношения R2, k1 - это внешний ключ. Если базовое отношение R2 содержит внешний ключ k1, то каждое значение k1 в R2 должно быть либо равным какому-либо значению R1, либо полностью неопределенным.

Достоинствами реляционного подхода являются:

1. Наличие простого, и в тоже время мощного математического аппарата

2. Возможность навигационного манипулирования данными без знания физических основ хранения данных.

Чтобы база данных была надежной, необходимо чтобы существовала нормализация. Существуют три нормальных формы.

Итак, условия первой нормальной формы:

Определить требуемые элементы данных, потому что они становятся столбцами в таблице. Поместить связанные элементы данных в таблицу.

Гарантировать отсутствие повторяющихся групп данных.

Гарантировать наличие первичного ключа.

Значение всех атрибутов атомарны.

Информационная система находится в первой нормальной форме.

Условия второй нормальной формы:

Отношение в первой нормальной форме.

Независимость первичных ключей и столбцов

Информационная система находится во второй нормальной форме.

Третья нормальная форма является заключительным шагом. Существуют нормальные формы с более высокими порядковыми номерами, но они гораздо сложнее и не обязательно ведут к созданию более эффективной базы данных. В базе данных требуется выбирать компромисс между минимизации избыточности данных и эффективностью.

Условия третьей нормальной формы:

Отношение во второй нормальной форме.

Все поля, не входящие в первичный ключ, зависят от первичного ключа.

Информационная система находится в третьей нормальной форме.

Таким образом, нормализация отношений успешно достигнута.

После нормализации отношений было создано 7 таблиц. Проиллюстрируем эти таблицы в режиме конструктора:

Рисунок 2.2 - Главная таблица в режиме конструктора


Рисунок 2.3 - Таблица "Инструкторы" в режиме конструктора

Рисунок 2.4 - Таблица "Клиенты" в режиме конструктора

Рисунок 2.5 - Таблица "Код операции" в режиме конструктора

Рисунок 2.6 - Таблица "Подъемник" в режиме конструктора

Рисунок 2.7 - Таблица "Прокат (прокат)" в режиме конструктора

Рисунок 2.8 - Таблица "Прокат (экипировка)" в режиме конструктора

Рисунок 2.9 - Таблица "Склон - Трансфер" в режиме конструктора

Рисунок 2.10 - Таблица "Склоны" в режиме конструктора

Рисунок 2.11 - Таблица "Услуга (трансфер)" в режиме конструктора